The Mechanics of Vesicle Blebbing

<u>Sebastian Hillringhaus</u>¹, G. Gompper¹ and D.A. Fedosov¹

¹Institute of Complex Systems, Forschungszentrum Juelich, Juelich, Germany

A broad range of *in silico* models (e.g. liquid or viscoelastic drop models) has been introduced

to reproduce the complex mechanical properties of various cell types [1]. These models are

used to understand and quantify experimental measurements. In this work, we employ a coarse-

grained cell model which incorporates the membrane properties similar to the RBC-model $\left[2\right]$

and an elastic inner mesh to include the cytoskeletal properties. The model is formulated in

the framework of the dissipative particle dynamics simulation method. We investigate cell- $% \left[\left({{{\left({{{\left({{{\left({{{c}}} \right)}} \right)}_{i}}} \right)}_{i}}} \right)$

blebbing in synthetic vesicles that are observed experimentally [3]. Cell-blebbing describes the

dissociation of the membrane from the inner network, in this case as result of inner stress. The

dissociated membrane will form a bubble within no actin network exists. We analyze different $% \left({{{\left[{{{\left[{{{\left[{{{c}} \right]}} \right]}_{i}}} \right]}_{i}}_{i}}} \right)$

properties of the system *in silico* and link them to biological factors as concentrations of binding proteins and physical properties like the applied stress.

[1] M. Rodriguez et al., Applied Mechanics Review (2013)

[2] H. Turlier et al., Nature Physics in press (2015)

[3] E. Loiseau et al., Science Advances (2016)