Vimentin provides the mechanical resilience required for amoeboid migration and protection of the nucleus.

Luiza Stankevicins¹, Marta Urbanska², Daniel Flormann¹, Emmanuel Terriac¹, Zahra Mostajeran¹, John Eriksson^{3,4} Franziska Lautenschläger^{1,5}

¹Department, and ²Department, Research Institute, Town, Country

¹Leibniz-Institut for New Materials, Saarbrücken, Germany

² Biotechnology Center, Center for Molecular and Cellular Bioengineering, TU Dresden, Dresden, Germany.

³ Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.

⁴Turku Bioscience Centre, University of Turku, Turku, Finland.

⁵NT faculty, Physics, Saarland University, Saarbrücken, Germany

Dendritic cells employ amoeboid migration through constricted passages to reach the lymph nodes, a crucial homing function for immune responses. Amoeboid migration requires mechanical resilience but the underlying molecular mechanisms remain unknown. As vimentin intermediate filaments (IFs) and microfilaments bidirectionally regulate adhesion-dependent migration, we analyzed whether analogous interactions could be engaged also in amoeboid migration. Vimentin was required for cellular resilience, resulting from a joint interaction between vimentin IFs and F-actin. Reduced actin mobility in the cell cortex of vimentin-reduced cells demonstrated that vimentin promotes subunit exchange and F-actin dynamics. These mechano-dynamic alterations in vimentin-deficient dendritic cells resulted in a striking impairment of amoeboid migration in confined environments in vitro and blocked lymph node homing in vivo in mouse experiments. As nuclear positioning is involved in confined amoeboid migration, vimentin-deficiency resulted in DNA double-strand breaks and cell death in compressed cells. These observations show that vimentin IF-microfilament interactions provide the specific mechano-dynamics required for dendritic cell migration, at the same time protecting the genome against deformation.