The mechanism of dynamin in membrane constriction - From static snapshots to a dynamic model

O. Ganichkin¹, R. Vancraenenbroeck^{2,3}, G. Rosenblum³, H. Hofmann³, AS Mikhailov^{4,5}, Jeffrey K. Noel^{1,4}, <u>Oliver Daumke^{1,6}</u>

¹Crystallography, Max Delbrück Center for Molecular Medicine, Berlin, Germany

²Department of Structural and Molecular Biology, University College London, London, United Kingdom

³Department of Structural Biology, Weizmann Institute of Science, Rehovot, Israel

⁴Department of Physical Chemistry, Fritz Haber Institute of the Max Planck Society, Berlin, Germany

⁵Computational Molecular Biophysics, WPI Nano Life Science Institute, Kanazawa, University, Kanazawa, Japan

⁶Institute for Chemistry and Biochemistry, Free University of Berlin, Berlin, Germany

Dynamin is a mechano-chemical GTPase that assembles at the neck of clathrin-coated vesicles and catalyzes membrane scission in a GTPase-dependent reaction. Here, I will describe previous structural data on dynamin from our and other groups. I will then explain our efforts toward translating the structural snapshots into a dynamic model of membrane constriction. We incorporated our experimental rate measurements and single molecule FRET-based force measurements into a model that resolves individual powerstrokes within a protein filament wound around a deformable membrane tube.