BK-channel as a fast and precise Ca²⁺ sensor: application to PMCA pump strength measurements

Barbara Schmidt¹, Christina E. Constantin², Bernd Fakler² and Heiko Rieger¹

¹Center for Biophysics and Department of Theoretical Physics, Saarland University, 66123 Saarbrücken, Germany

²Institute of Physiology, University of Freiburg, 79104 Freiburg, Germany

Ca²⁺ diffusion within cells and penetration of Ca²⁺ through their membrane engages a wide field of theoretical and experimental research. Therefore, the monitoring of rapid changes of the Ca²⁺ concentration beneath the cell membrane is of great interest. Here, we make use of BK-type Ca²⁺-activated K⁺ channels to determine the Ca²⁺ activity of PMCA, which transport Ca²⁺ ions out of cells. Due to their large conductance and their particular gating kinetics the BK channels may be used as fast and reliable sensors for intracellular Ca²⁺ - concentration beneath the plasma membrane. Experimentally we monitor the PMCA-mediated Ca²⁺ clearance (or transport) by the decay of BK-currents following their activation by a short (0.8 ms) period of Ca²⁺ - influx through Cav2.2 channels. To relate the experimentally observed temporal evolution of the K⁺ current to the underlying temporal evolution of the Ca²⁺ concentration we implement a theoretical model for the Ca²⁺-dependence of the BK-current and of the PMCA pump strength. Next to the transport in and out of a cell and the diffusion of Ca²⁺ ions within the cell, we expand our model by the reaction of the Ca²⁺ concentration with a buffer solution, as well defined EGTA concentration is present in all experimental measurements. We fit the PMCA pump strength by the best match of the predicted time course of the K⁺ current with the experimental data. It turns out that this pump strength is at least 2 orders of magnitude larger than what has been assumed so far.