Microfluidic generation of soft microgels as a tool for studying the influence of 3D microenvironments on the cellular responses upon external stimuli

Nina Apushkinskaya^{1,2}, Jonathan S. O'Connor^{1,3}, Thomas Kuhn⁴, Gregor Fuhrmann⁴, Eunheui Gwag1,5, Baeckkyoung Sung1,5*, Leon Abelmann1,3,6, Andreas Manz1,3

1KIST Europe Forschungsgesellschaft mbH, 66123 Saarbrücken, Germany

2Department of Food Technology, Fulda University of Applied Sciences, 36037 Fulda, Germany

3Department of Systems Engineering, University of Saarland, 66123 Saarbrücken, Germany

4Helmholtz Institut für Pharmazeutische Forschung Saarland (HIPS), 66123 Saarbrücken, Germany

5Division of Energy & Environment Technology, University of Science & Technology, 34113 Daejeon, Republic of Korea

6MESA+ Institute for Nanotechnology, University of Twente, 7500 AE Enschede, The Netherlands *Correspondence: sung@kist-europe.de

Microencapsulation of living cells in biopolymer microgels has been attracting interest due to the microgel's capability to mimic 3D microenvironments on a microscale platform [1-3]. Cells embedded in 3D gel matrices can transduce external physicochemical cues into intracellular biochemical signals, therefore exhibit *in vivo*-like physiological responses.

In this work, we demonstrate that loading gelatine microgels with human liver cells (HepG2 cell line) or probiotic bacteria (*Lactobacilllus plantarum*) using droplet microfluidics can result in: i) the ability to reflect 3D-like toxicity responses of HepG2 cells, as well as ii) the increase the survival rate of *L. plantarum* during exposure to adverse conditions in the gastrointestinal tract. The cell-loaded microgels produced in this process are covalently crosslinked with a naturally derived crosslinker, genipin. This allows the mechanical stiffness of the microgel matrix to be controlled by tuning the crosslinking degree.

Based on this *in vitro* platform, we demonstrate the optimisation of microfluidic parameters for the on-chip droplet generation system and finally determine the mechanical properties of the microgel matrix. We then compare the dose sensitivity of ethanol between 3D-encapsulated and 2D-grown HepG2 cells, and the viability of *L. plantarum* under low pH conditions under encapsulated and nonencapsulated milieux.

[1] J. S. O'Connor, H. Kim, E. Gwag, L. Abelmann, B. Sung, A. Manz, 3D Printed microfluidics moulds for the microgel encapsulation of cells, *Proceedings of IEEE International Conference on Micro Electro Mechanical Systems (MEMS)*, Jan. 2021, pp. 1023–1026. doi: 10.1109/MEMS51782.2021.9375385

[2] D. J. McClements, Designing biopolymer microgels to encapsulate, protect and deliver bioactive components: Physicochemical aspects, *Adv. Colloid Interface Sci.* **240**, 31–59 (2017). doi: 10.1016/j.cis.2016.12.005

[3] B. Sung, J. Krieger, B. Yu, M. H. Kim, Colloidal gelatin microgels with tunable elasticity support the viability and differentiation of mesenchymal stem cells under pro-inflammatory conditions, *J. Biomed. Mater. Res. Part A* **106A**, 2753- 2761 (2018). doi: 10.1002/jbm.a.36505