Physical limits to spatiotemporal cellular signaling

VAIBHAV WASNIK AND KARSTEN KRUSE

Saarland University, Saarbrucken, Germany

ABSTRACT

Cells need to respond to spatiotemporal signals. Physical limits on the detection of such signals are poorly understood. Here we study the detection of spatiotemporal Ca^{2+} -signals by the conventional Protein Kinase C- α (PKC- α). Protein kinases C are ubiquitously expressed and, together with Calmodulin, form the basic read-out module for Ca^{2+} -signals. In order to activate PKC- α , it needs to simultaneously bind to Ca^{2+} and to Diacylglycerol (DAG) on the plasma membrane. On the membrane, PKC- α forms clusters. We explore the consequences of cluster formation for signal transduction. In particular we show that PKC- α acts as a low pass filter and determines the accuracy of the readout. Our study highlights the possible role of collective effects for cellular signal transduction.